OXIDATION OF ALLYL-AND ALLENYLCOBALOXIMES BY MANGANESE (III) **ACETATE. A NEW ROUTE TO DIMETHYLGLYOXIME MONOETHERS.**

F. GAUDEMER and A. GAUDEilER

Laboratoire de Chimie de Coordination Bioorganique. LA 255 Universite Paris-Sud, Centre d'orsay, 91405 ORSAY (France).

Summary : **Oxidation of allyl-and allenylcobaloximes by manganese (III) acetate yields ally1 and propargyl ethers of dimethylglyoxime**

Great interest has recently been focused on the reaction of allyl(pyridine)cobaloximes RCo(dmgH)₂Py 1 (dmgH = dimethylglyoximate monoanion, Py = pyridine) with organic radical precursors (1-4). Manganic acetate Mn(OAc)₃ has been shown to be a good source of **CH2COOH radical when heated at** 150°C **(5) and it was tempting to try and prepare substituted** acetic acid R-CH₂COOH by an SH₂ type reaction between this radical and the organocobalt complexes. In fact, heating a solution of Mn(OAc)₃ and RCo(dmgH)₂Py did not lead to the **expected products but instead, when R = benzyl, ally1 or allenyl, an intramolecular transfer of the R ligand to one of the dinethylglyoximato ligands wasobserved giving rise to monoether of dimethylglyoxime of general formula 2. Compound 2a was previously obtained by Halpern et al.** (6) by oxidation of benzyl(aquo)cobaloxime $C_6H_5CH_2Co(dmgH)_2 H_2O$ with $IrCl_6^2$ and its structure was elucidated by Johnson et al. (7). Moreover the formation of dimethylglyoxime **monoethers has been mentioned to occur as a side-reaction in a number of reactions involving organocobaloximes and various electrophilic or oxidising reagents (4,7). However these** compounds, except for 2a, have never been fully characterised previously.

In a typical experiment, a solution containing 1 mMole of cobaloxime 1, 2 mMoles of Mn(OAc)₃ and 6 Moles of CH₃COONa in 20 ml of glacial acetic acid was warmed to 70°C for **30 minutes. After addition of water and extraction of the reaction product by ether, monoether 2 was obtained in relatively pure state and purified by recristallisation. The yields** (Table 1) varied markedly with the R group. In the case of allylcobaloximes lc, d total **rearrangement of the ally1 group occured as shown by the NMR spectra of the corresponding** allyl ethers 2c, d. A similar rearrangement was observed with allenylcobaloximes le, f leading to the propargylic ethers 2e, f.

These reactions probably involve the intermediate formation by a one-electron <code>oxydation, of the Co(IV)</code> radical-cation (RCo(dmgH)₂Py): . Halpern et al. (8) have conclusi **v**ely shown that such species are formed by chemical $(\texttt{Br}_{2}, \texttt{PbO}_{2}, \ \texttt{Ce}^{+ \, \texttt{r}}, \ \texttt{I}^{- \, \texttt{r}})$ or electroche mical oxidation of alkylcobaloximes 1. This radical-cation, which is stable at low tempera**ture, undergoes decomposition at room temperature: in particular nucleophilic attack at the** α -carbon is observed when a good nucleophile (e.g.Cl⁻) is present. To confirm that the ethers 2 resulted from the rearrangement of an intermediate cobalt(IV) complex, oxydation of the complex 1d with Cerium(IV) ammonium nitrate was performed: the monoether 2d was obtained **in 60% yield. The intramolecular transfer of the benzyl,allyl or allenyl group to the equatorial ligand can be viewed either as a nucleophilic displacement of cobalt(IV) by the dmgH** anion (S_{N2}² reaction) or as a homolytic displacement of cobalt(III) by the dimethylglyoximate radical $(S_H z^2)$ reaction). Although there is no experimental way to distinguish between the **two mechanisms, it should be mentioned in support to the latter mechanism, that the reactions** between allylcobaloximes and BrCCl₃ (1,2), BrCH(CO₂C₂H₅)₂ (3) and ArSO₂Cl (4), which have been postulated to be S_H2' reactions, exhibit the same regiospecificity as the present

$$
\begin{array}{c}\n0 \\
\hline\nN \\
N \\
\hline\nN \\
N \\
\hline\nP_{yr} \\
\hline\nO \\
\hline\n\end{array}
$$
\n
$$
\begin{array}{c}\n1 \\
\hline\nN \\
\hline\nN \\
\hline\nN \\
\hline\n\end{array}
$$
\n
$$
\begin{array}{c}\nMn(OAc)_{3} \\
\hline\n\end{array}
$$
\n
$$
\begin{array}{c}\nMn(OAc)_{3} \\
\hline\n\end{array}
$$

1a $R = C_6H_5 - CH_2 -$

$$
1b \qquad R = -CH_2 - CH = CH_2
$$

$$
1c \qquad R = -CH_2 - CH = CH - CH_3
$$

 \mathbb{R}^2

$$
1d \qquad R = _CH_2 _CH = C \frac{CH_3}{CH_3}
$$

$$
1e \qquad R = -CH = C = C \begin{cases} C & C H_3 \\ CH_3 & C H_4 \end{cases}
$$

$$
M \qquad R = -CH = C = \left(\begin{array}{c}\end{array}\right)
$$

$$
2a \qquad R' = C_6 H_5 - CH_2 -
$$

$$
2b \qquad R' = -CH_2 - CH = CH_2
$$

$$
2c \qquad R' = -CH - CH = CH_2
$$

CH₃

$$
2d \t R' = \frac{CH_3}{CH_3} \sum_{i} C - CH = CH_2
$$

$$
2e \qquad R' = \frac{CH_3}{CH_3} \begin{cases} C - C \equiv CH \\ \equiv \end{cases}
$$

$$
2f \qquad R' = \bigotimes C \equiv CH
$$

reaction (9).

T A B L E

REACTION PRODUCTS	YIELD %	MP °C	CHEMICAL SHIFTS (ppm) $-0 - R$ ¹						
			$CH2-C=N$				OH $\sqrt{CH_3}$ = CH = CH ₂ = CH 0-CH ¹		
2a	-38	$90 - 92$	$1.98 - 2.05$ 8.37						5.19
2 _b	41	$60 - 62$	$2.00 - 2.06$ 8.78			6.02 5.27			4.64
2c	47	$34 - 36$	2.00-2.07 8.86 1.36 5.90 5.17						4.71
2d	78	011	$2,02-2,11$ 9.51 1.44 6.05 5.14						
2e	70	$90 - 92$	$2.06 - 2.16$ 8.9 1.67					2.42	
2f	93	$102 - 105$	$2.00 - 2.11$ 9.35					2.45	

REFERENCES

- (1) **B.D. GUPTA, T. FUNABIKI and M.D. JOHNSON J. Amer. Chem. Sot., 98, 6697, 1976**
- (2) **A. BURY, C.J. COOKSEY, T. FUNABIKI, B.D. GUPTA and M.D. JOHNSON J.C.S. Perkin** II, 1050, 1979
- **(3)** 14. **VEBER, K.N.V. DUONG, F. GAUDEMER and A. GAUDEMER J. Organometal, Chem.,** 177, **231, 1979**
- **(4) A.E. CREASE, B.D. GUPTA, M.D. JOHNSON, E. BIALKOWSKA, K.N.V. DUONG and A. GAUDEMER J.C.S. Perkin I, 2611, 1979**
- **(5) E.1. HEIBA, R.M. DESSAU and P.G. RODEWALD J. Amer. Chem. Sot., 96, 7977, 1974**
- **(6) P. ABLEY, E.R. DOCKAL and J. HALPERN** J. Amer. Chem. Soc., 94, 659, 1972
- **(7) S.N. ANDERSON, D.H. BALLARD and M.D. JOHNSON J.C.S. Perkin** II, 311, 1972
- **(8)** J, HALPERN, M.S. CHAN, T.S. ROCHE and G.M. TOM, **Acta Chem. Scandinavia, A, 33, 141, 1979**
- **(9) All new compounds prepared in this study were fully characterised by spectroscopic** (IR, **NMR and mass spectroscopy) methods.**

(Received in France 11 Pebruary 1980)